R978879339 4WRAB6E25-1X/G24N9K4/MR
R978900791 4WRAB6W25-1X/G24N9K4/MR
R978908032 4WRAB6E03-1X/G24N9K4/MR
R978908233 4WRAB6WA25-1X/G24N9K4/MR
R978909349 4WRAB6EA25-1X/G24N9K4/MR
R978909814 4WRAB6W12-1X/G24N9K4/MR
R978909832 4WRAB6EA12-1X/G24N9K4/MR
R978912832 4WRA6W03-2X/G24K4/V
R978912954 4WRAB6E12-1X/G24N9K4/VR
R978913367 4WRAB6W06-1X/G24N9K4/MR
R978914371 4WRAEB6W25-1X/G24N9K31/M
R978916639 4WRAE6E03-2X/G24K31/A1V
R978918532 4WRAB6E25-1X/G24N9K4/VR
R978916639 4WRAE6E03-2X/G24K31/A1V
R978895557 4WRAEB6E12-1X/G24N9DK26/VR
R978895630 4WRAEB6WA12-1X/G24N9DK26/MR
力士乐比例阀为德国REXROTH的产品,REXROTH不仅是世界前100强公司,也是世界**高科技企业之一,50多年来,REXROTH集团的业务部门致力于开发专业型液压传动领域高科技产品,其产品和品牌已享誉全球。因为在世界市场上,目前没有其他的品牌能向顾客提供所有传动与控制技术,专门化与一体化并举。正因如此,博世-力士乐在液压传动、控制及移动技术领域成为了世界 性的榜样。本REXROTH为工业及工厂自动化、行走机械、以及可再生能源领域的客户提供传动、控制与移动解决方案;作为全球超过50万客户的共同选择,力士乐正不断为客户提供高质量的电控、液压、气动以及机电一体化元件和系统。REXROTH博世-力士乐气动产品大量应用在钻修设备的气路上,以及卡特匹勒与艾里逊变速箱的配合中以实现动力的操作和控制。以REXROTH博世-力士乐高性能的液压产品为依托,REXROTH向钢铁行业提供连铸、连轧等生产线的全套液压系统和液压元件。REXROTH博世-力士乐在船舶和海洋钻井平台的液压和气动传动系统及控制方面具有渊博的经验,产品应用在钻井平台、推进系统、舵机系统、发动机控制系统。
R978896845 4WRAB6E25-1X/G24N9DK25/VR
R978899965 4WRAEB6E25-1X/G24N9DK26/VR
R978899966 4WRAEB6W25-1X/G24N9DK26/VR
R978900109 4WRAEB6W12-1X/G24N9DK26/VR
R978900791 4WRAB6W25-1X/G24N9K4/MR
R900244238 4WRA6WA30-2X/G24N9K4/V
R900346622 4WRA6EA20-1X/24NK4/M
R900380090 4WRA6W10-1X/24NK4/M
R900381081 4WRA10EA40-1X/24NK4/M
R900382854 4WRA6E20-1X/24N9K4/M
R900555967 4WRAE10W1-30-2X/G24N9K31/A1V
4WRA6W07-2X/G24K4/V磨粒磨损现象
?泵芊獾募湎毒哂邢喽栽硕?保?ぷ骰肪持械幕页竞蜕沉5缺徽掣皆诨钊?吮砻妫?⑺孀呕钊?说耐?丛硕?胗湍ひ黄鸨淮?敫啄冢?晌?秩隣型密封圈表面的磨粒,加速O型圈的磨损,以致其失去密封性。为了避免这种情况发生,在往复运动式密封装置的外伸轴端处必须使用防尘圈。
5、滑动表面对O型圈的影响
滑动表面的粗糙度是影响O型圈表面摩擦与磨损的直接因素。一般地说,表面光洁摩擦与磨损就小,所以滑动表面的粗糙度数值往往很低(Ra0.2~0.050μm)。但是,试验表明,表面粗糙过低(Ra低于0.050μm)又会给摩擦与磨损带来不利的影响。这是因为微小的表面凹凸不平,可以保持必要的润滑油膜。因此要选择适当的表面要求。
滑动表面的材质对O型圈的寿命也有影响。滑动表面材质的硬度越大、耐磨性越高、保持光洁的能力就越强,O型圈的寿命也就越长。这也是液压缸活塞杆表面镀铬的重要原因。同理可以解释具有同样粗糙度的用铜、铝合金制成的滑动表面比钢制滑动表面对密封圈的摩擦与磨损更为严重,低硬度、大压缩量的密封圈不如高硬度、小压缩量的密封圈耐用的情况。
6、摩擦力与O型圈的应用
在动密封装置中,摩擦与磨损是O型圈损坏的重要影响因素。磨损程度主要取决于摩擦力的大小。当液体压力微小时,O型圈摩擦力的大小取决于它的预压缩量。当工作液体承受压力时,摩擦力随之工作压力的增加而增大。在工作压力小于20MPa的情况下,近似地呈线形关系。压力大于20MPa时,随着压力的增加,O型圈与金属表面接触面积的增加也逐渐缓慢,摩擦力的增加也相应缓慢。在正常情况下,O型圈的使用寿命随着液体压力的升高将会近似的呈平方关系而减小。
摩擦力的增加,使得旋转或往复运动的轴与O型密封圈之间产生大量的摩擦热。由于多数O型圈都是用橡胶制成的,导热性极差。因此,摩擦热就会引起橡胶的老化,导致O型圈实效,破坏其密封性能。摩擦还会引起O型圈表面损伤,使压缩量减小。严重的摩擦会很快引起O型圈的表面损坏,失去密封性。作气动往复运动用密封时,摩擦热还会引起粘着,造成摩擦力进一步增加。
运动用密封在低速运动时,摩擦阻力还是引起爬行的一个因素,影响元件和系统的工作性能。所以对运动密封来说,摩擦性是重要性能之一。摩擦系数是摩擦特性的一个评价指标,合成橡胶摩擦系数较大,由于密封在运动状态时,通常处于工作油液或润滑剂参与的混合润滑状态,摩擦系数一般在0.1以下。摩擦力的大小在很大程度上取决于被密封件的表面硬度与表面粗糙度。
4WRA6W07-2X/G24K4/V